If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+18k+33=0
a = 1; b = 18; c = +33;
Δ = b2-4ac
Δ = 182-4·1·33
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-8\sqrt{3}}{2*1}=\frac{-18-8\sqrt{3}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+8\sqrt{3}}{2*1}=\frac{-18+8\sqrt{3}}{2} $
| 20=x+9(3.1415)((3)^1/2)x | | 20=x+9(3.1415)((3)^1/2)x | | (x^2-5x)+(4x-12)=120 | | X/x=2/x=3/15 | | 5-2r=15 | | 12-3(x-3)=32 | | 2x-5(x+5)=65 | | 1.4x+1.26=0 | | p*1/9=4/7 | | Y=2(-5+.5y)+10 | | 2x=x^2=24 | | 0.2x+2.4=x | | g·19=47 | | 4/7/1/9=g | | x/3=3/12 | | 9(7x+1)+3x=331-(-4x) | | d-d+2d=20 | | 2/7x-3/4=-23 | | 10-6x=-3-7x | | g*1/9=4/7 | | 2(a+2)=3a-1 | | z+3=9/z-6=-2 | | Y-5=1/3(x+12) | | 3s+12=16 | | y+2y-5-5y=7 | | (2x^2)=(2x^2)=64 | | w-8/9=7 | | 19.50+2x+2.50=36.50 | | z=3=9/z-6=-2 | | 19.50+2x+2.50=36.59 | | 2a-12a=12-8a | | 2j+2j+3j-4j=9 |